Multidrug resistance protein 2-mediated estradiol-17beta-D-glucuronide transport potentiation: in vitro-in vivo correlation and species specificity.

نویسندگان

  • K Herédi-Szabó
  • H Glavinas
  • E Kis
  • D Méhn
  • G Báthori
  • Z Veres
  • L Kóbori
  • O von Richter
  • K Jemnitz
  • P Krajcsi
چکیده

Multidrug resistance protein 2 (MRP2) is a multispecific organic anion transporter expressed at important pharmacological barriers, including the canalicular membrane of hepatocytes. At this location it is involved in the elimination of both endogenous and exogenous waste products, mostly as conjugates, to the bile. Estradiol-17beta-d-glucuronide (E(2)17betaG), a widely studied endogenous substrate of MRP2, was shown earlier to recognize two binding sites of the transporter in vesicular transport assays. MRP2 modulators (substrates and nonsubstrates) potentiate the transport of E(2)17betaG by MRP2. We correlated data obtained from studies of different complexities and investigated the species-specific differences between rat and human MRP2-mediated transport. We used vesicular transport assays, sandwich-cultured primary hepatocytes, and in vivo biliary efflux in rats. Our results demonstrate that the rat Mrp2 transporter, unlike the human MRP2, transports E(2)17betaG according to Michaelis-Menten type kinetics. Nevertheless, in the presence of modulator drugs E(2)17betaG transport mediated by the rat transporter also shows cooperative kinetics as potentiation of E(2)17betaG transport was observed in the vesicular transport assay. We also demonstrated that the potentiation exists both in rat and in human hepatocytes and in vivo in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2).

Multidrug resistance protein 2 (MRP2/Mrp2) is a transporter that can influence the absorption, distribution, and elimination of many drugs. Mrp2 knockout mice are being used to study Mrp2 functions in vivo, including pharmacokinetics of drugs. To assess possible species-specific differences between human MRP2 and mouse Mrp2, we generated polarized cell lines expressing mouse Mrp2 and used these...

متن کامل

Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3).

We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones overproducing MRP3 were resistant to the epipodophyllotoxins etoposide and teniposide but not to vincris...

متن کامل

Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2.

We have proposed previously that the evaluation of transcellular transport across the double-transfected Madin-Darby canine kidney II (MDCK II) monolayer that expresses both human organic anion transporting polypeptide 4 (OATP2/SLC21A6) and multidrug resistance associated protein 2 (MRP2/ABCC2) on the basal and apical membranes, respectively, may be useful in characterizing human biliary excret...

متن کامل

Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1.

The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a pr...

متن کامل

Estradiol 3-glucuronide is transported by the multidrug resistance-associated protein 2 but does not activate the allosteric site bound by estradiol 17-glucuronide.

beta-estradiol 17-(beta-D-glucuronide) (E217G) is a well known cholestatic agent and substrate of multidrug resistance-associated protein 2 (Mrp2), whereas beta-estradiol 3-(beta-D-glucuronide) (E23G) is a noncholestatic regioisomer of E217G with unknown transport properties. The purpose of this study was to compare and contrast the Mrp2-mediated transport of E217G and E23G. The full coding reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2009